Category Archives: Python

Open Source PyMOL installation on Windows

A year ago, I used Gheorghe Rotaru’s helpful blog post to install PyMOL. Unfortunately, after resetting my computer, I have just discovered that some of the links are broken. Here are the installation steps with new links provided by Christoph Gohlke, who generously offers pre-compiled Windows versions of the latest PyMOL software along with all its requirements.

Install the latest version of Python 3 for Windows:
Download the Windows Installer (x-bit) for Python 3 from their website, with x being your Windows architecture – 32 or 64.

Follow the instructions provided on how to install Python. You can confirm the installation by running ‘py’ in PowerShell.

Continue reading

Working with PDB Structures in Pandas

Pandas is one of my favourite data analysis tools working in Python! The data frames offer a lot of power and organization to any data analysis task. Here at OPIG we work with a lot of protein structure data coming from PDB files. In the following article I will go through an example of how I use pandas data frames to analyze PDB data.

Continue reading

Finding and testing a reaction SMARTS pattern for any reaction

Have you ever needed to find a reaction SMARTS pattern for a certain reaction but don’t have it already written out? Do you have a reaction SMARTS pattern but need to test it on a set of reactants and products to make sure it transforms them correctly and doesn’t allow for odd reactants to work? I recently did and I spent some time developing functions that can:

  1. Generate a reaction SMARTS for a reaction given two reactants, a product, and a reaction name.
  2. Check the reaction SMARTS on a list of reactants and products that have the same reaction name.
Continue reading

A Simple Way to Quantify the Similarity Between Two Sets of Molecules

When designing machine learning algorithms with the aim of accelerating the discovery of novel and more effective therapeutics, we often care deeply about their ability to generalise to new regions of chemical space and accurately predict the properties of molecules that are structurally or functionally dissimilar to the ones we have already explored. To evaluate the performance of algorithms in such an out-of-distribution setting, it is essential that we are able to quantify the data shift that is induced by the train-test splits that we rely on to decide which model to deploy in production.

For our recent ICML 2023 paper Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions, we chose to quantify the distributional similarity between two sets of molecules through the Maximum Mean Discrepancy (MMD).

Continue reading

What can you do with the OPIG Immunoinformatics Suite? v3.0

OPIG’s growing immunoinformatics team continues to develop and openly distribute a wide variety of databases and software packages for antibody/nanobody/T-cell receptor analysis. Below is a summary of all the latest updates (follows on from v1.0 and v2.0).

Continue reading

How to turn a SMILES string into an extended-connectivity fingerprint using RDKit

After my posts on how to turn a SMILES string into a molecular graph and how to turn a SMILES string into a vector of molecular descriptors I now complete this series by illustrating how to turn the SMILES string of a molecular compound into an extended-connectivity fingerprint (ECFP).

ECFPs were originally described in a 2010 article of Rogers and Hahn [1] and still belong to the most popular and efficient methods to turn a molecule into an informative vectorial representation for downstream machine learning tasks. The ECFP-algorithm is dependent on two predefined hyperparameters: the fingerprint-length L and the maximum radius R. An ECFP of length L takes the form of an L-dimensional bitvector containing only 0s and 1s. Each component of an ECFP indicates the presence or absence of a particular circular substructure in the input compound. Each circular substructure has a center atom and a radius that determines its size. The hyperparameter R defines the maximum radius of any circular substructure whose presence or absence is indicated in the ECFP. Circular substructures for a central nitrogen atom in an example compound are depicted in the image below.

Continue reading

How to build a Python dictionary of residues for each molecule in PyMOL

Sometimes it can be handy to work with multiple structures in PyMOL using Python.

Here’s a snippet of code you might find useful: we iterate over all the α-carbon atoms in a protein and append to a list tuples such as (‘GLY’, 1). The dictionary, ‘reslist’, returns a list of residue names and indices for each molecule, where the key is a string containing the name of the molecule.

from pymol import cmd

# Create a list of all the objects, called 'mpls':
mols = cmd.get_object_list('*')

# Create an empty dictionary that will return a list of residues
# given the name of the molecule object
reslist = {}

# Set the dictionaries to be empty lists
for m in mols:  reslist[m] = []

# Use PyMOL's iterate command to go over every α-Carbon and append 
# a tuple consisting of the each residue's residue name ('resn') and
# residue index ('resi '):
for m in mols:  cmd.iterate('%s and n. ca'%m, 'reslist["%s"].append((resn,int(resi)))'%m)

This script assumes you only have protein molecules loaded, and ignores things like chain ID and insertion codes.

Once you have your list of residues, you can use it with the cmd.align command, e.g., to align a particular residue to a reference structure.

Using Conda environments with Flask and Apache

With the advent of ABlooper, we’ve recently introduced OpenMM as a new dependency for the SAbDab-SAbPred antibody modelling platform. By far the easiest way to install the OpenMM Python API is via Conda, so we’ve moved to Conda environments for the entire platform. This has made installation of the platform much easier, but introduces complications when it comes to running its web applications under Apache. In this post, I’ll briefly explain the reason for this, and provide a basic guide for running Flask apps using Conda environments under Apache.

Continue reading

Automatic argument parsers for python

One of the recurrent problems I used to have when writing argument parsers is that after refactoring code, I also had to change the argument parser options which generally led to inconsistency between the arguments of the function and some of the options of the argument parser. The following example can illustrate the problem:

def main(a,b):
  """
  This function adds together two numbers a and b
  param a: first number
  param b: second number
  """
  print(a+b)

if __name__ == "__main__":
  import argparse
  parser = argparse.ArgumentParser()
  parser.add_argument("--a", type=int, required=True, help="first number")
  parser.add_argument("--b", type=int, required=True, help="second number")
  args = parser.parse_args()
  main(**vars(args))

This code is nothing but a simple function that prints a+b and the argument parser asks for a and b. The perhaps not so obvious part is the invocation of the function in which we have ** and vars. vars converts the named tuple args to a dictionary of the form {“a":1, "b":2}, and ** expands the dictionary to be used as arguments for the function. So if you have main(**{"a":1, "b":2}) it is equivalent to main(a=1, b=2).

Let’s refactor the function so that we change the name of the argument a to num.

Continue reading

Meeko: Docking straight from SMILES string

When docking, using software like AutoDock Vina, you must prepare your ligand by protonating the molecule, generating 3D coordinates, and converting it to a specific file format (in the case of Vina, PDBQT). Docking software typically needs the protein and ligand file inputs to be written on disk. This is limiting as generating 10,000s of files for a large virtual screen can be annoying and hinder the speed at which you dock.

Fortunately, the Forli group in Scripps Research have developed a Python package, Meeko, to prepare ligands directly from SMILES or other molecule formats for docking to AutoDock 4 or Vina, without writing any files to disk. This means you can dock directly from a single file containing all the SMILES of the ligands you are investigating!

Continue reading