Category Archives: Small Molecules

From code to molecules: The future of chemical synthesis

In June, after I finish my PhD, I will be joining Chemify, a new startup based in Glasgow that aims to make chemical synthesis universally accessible, reproducible and fully automated using AI and robotics. After previously talking about “Why you should care about startups as a researcher” and a quick guide on “Commercialising your research: Where to start?” on this blog, I have now joined a science-based startup fresh out of university myself.

Chemify is a spinout from the University of Glasgow originating from the group of Prof. Lee Cronin. The core of the technology is the chemical programming language χDL (pronounced “chi DL”) that, in combination with a natural language processing AI that reads and understands chemical synthesis procedures, can be used to plan and autonomously executed chemical reactions on robotic hardware. The Cronin group has also already build the modular robotic hardware needed to carry out almost any chemical reaction, the “Chemputer”. Due to the flexibility of both the Chemputer and the χDL language, Chemify has already shown that the applications go way beyond simple synthesis and can be applied to drug formulation, the discovery of new materials or the optimisation of reaction conditions.

Armed with this transformational software and hardware, Chemify is now fully operational and is hiring exceptional talent into their labs in Glasgow. I am excited to see how smart, AI-driven automation techniques like Chemify will change how small scale chemical synthesis and chemical discovery more broadly is done in the future. I’m super excited to be part of the journey.

Paper review: “EquiBind”

Molecular docking helps us understand how small-molecules interact with proteins. This is especially useful in early drug development stages such as target identification and compound screening. Quick and accurate docking software allows researchers to focus their attention on a smaller set of lead molecules for further testing. Traditionally, docking software has employed first principles from physics and chemistry. Recently, deep learning has become all the rage for molecular docking, maybe motivated by the successful application of deep learning to molecular folding.

Method

EquiBind is a deep learning unconstrained docking method which models a fixed receptor and a ligand with selected rotatable bonds. It predicts the binding pocket and the ligand’s conformation within the pocket in one go. Under the hood, EquiBind employs two great ideas from a recent ICLR 2022 Paper: a SE3-invariant graph neural network based architecture and the idea to generate fixed sets of matching key points to define a rotation and translation between receptor and ligand. In addition, the authors innovate a fast method to project a deformed ligand onto the space spanned by the rotatable bonds of a pre-generated ligand conformation.

Continue reading

Better Models Through Molecular Standardization

“Cheminformatics is hard.”

— Paul Finn

I would add: “Chemistry is nuanced”… Just as there are many different ways of drawing the same molecule, SMILES is flexible enough to allow us to write the same molecule in different ways. While canonical SMILES can resolve this problem, we sometimes have different problem. In some situations, e.g., in machine learning, we need to map all these variants back to the same molecule. We also need to make sure we clean up our input molecules and eliminate invalid or incomplete structures.

Different Versions of the Same Molecule: Salt, Neutral or Charged?

Sometimes, a chemical supplier or compound vendor provides a salt of the compound, e.g., sodium acetate, but all we care about is the organic anion, i.e., the acetate. Very often, our models are built on the assumption we have only one molecule as input—but a salt will appear as two molecules (the sodium ion and the acetate ion). We might also have been given just the negatively-charged acetate instead of the neutral acetic acid.

Tautomers

Another important chemical phenomenon exists where apparently different molecules with identical heavy atoms and a nearby hydrogen can be easily interconverted: tautomers. By moving just one hydrogen atom and exchanging adjacent bond orders, the molecule can convert from one form to another. Usually, one tautomeric form is most stable. Warfarin, a blood-thinning drug, can exist in solution in 40 distinct tautomeric forms. A famous example is keto-enol tautomerism: for example, ethenol (not ethanol) can interconvert with the ketone form. When one form is more stable than the other form(s), we need to make sure we convert the less stable form(s) into the most stable form. Ethenol, a.k.a. vinyl alcohol, (SMILES: ‘C=CO[H]’), will be more stable when it is in the ketone form (SMILES: ‘CC(=O)([H])’):

from IPython.display import SVG # to use Scalar Vector Graphics (SVG) not bitmaps, for cleaner lines

import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw # to draw molecules
from rdkit.Chem.Draw import IPythonConsole # to draw inline in iPython
from rdkit.Chem import rdDepictor  # to generate 2D depictions of molecules
from rdkit.Chem.Draw import rdMolDraw2D # to draw 2D molecules using vectors

AllChem.ReactionFromSmarts('[C:1]-[C:2](-[O:3]-[H:4])>>[C:1]-[C:2](=[O:3])(-[H:4])')
Continue reading

How to prepare a molecule for RDKit

RDKit is very fussy when it comes to inputs in SDF format. Using the SDMolSupplier, we get a significant rate of failure even on curated datasets such as the PDBBind refined set. Pymol has no such scruples, and with that, I present a function which has proved invaluable to me over the course of my DPhil. For reasons I have never bothered to explore, using pymol to convert from sdf, into mol2 and back to sdf format again (adding in missing hydrogens along the way) will almost always make a molecule safe to import using RDKit:

from pathlib import Path
from pymol import cmd

def py_mollify(sdf, overwrite=False):
    """Use pymol to sanitise an SDF file for use in RDKit.

    Arguments:
        sdf: location of faulty sdf file
        overwrite: whether or not to overwrite the original sdf. If False,
            a new file will be written in the form <sdf_fname>_pymol.sdf
            
    Returns:
        Original sdf filename if overwrite == False, else the filename of the
        sanitised output.
    """
    sdf = Path(sdf).expanduser().resolve()
    mol2_fname = str(sdf).replace('.sdf', '_pymol.mol2')
    new_sdf_fname = sdf if overwrite else str(sdf).replace('.sdf', '_pymol.sdf')
    cmd.load(str(sdf))
    cmd.h_add('all')
    cmd.save(mol2_fname)
    cmd.reinitialize()
    cmd.load(mol2_fname)
    cmd.save(str(new_sdf_fname))
    return new_sdf_fname

Post-processing for molecular docking: Assigning the correct bond order using RDKit.

AutoDock4 and AutoDock Vina are the most commonly used open-source software for protein-ligand docking. However, they both rely on a derivative of the “PDB” (Protein Data Base) file format: the “PDBQT” file (Protein Data Bank, Partial Charge (Q), & Atom Type (T)). In addition to the information contained in normal PDB files, PDBQT files have an additional column that lists the partial charge (Q) and the assigned AutoDock atom type (T) for each atom in the molecule. AutoDock atom types offer a more granular differentiation between atoms such as listing aliphatic carbons and aromatic carbons as separate AutoDock atom types.

The biggest drawback about the PDBQT format is that it does not encode for the bond order in molecules explicitly. Instead, the bond order is inferred based on the atom type, distance and angle to nearby atoms in the molecule. For normal sp3 carbons and molecules with mostly single bonds this system works fine, however, for more complex structures containing for example aromatic rings, conjugated systems and hypervalent atoms such as sulphur, the bond order is often not displayed correctly. This leads to issues downstream in the screening pipeline when molecules suddenly change their bond order or have to be discarded after docking because of impossible bond orders.

The solution to this problem is included in RDKit: The AssignBondOrdersFromTemplate function. All you need to do is load the original molecule used for docking as a template molecule and the docked pose PDBQT file into RDKIT as a PDB, without the bond order information. Then assign the original bond order from your template molecule. The following code snippet covers the necessary functions and should help you build a more accurate and reproducible protein-ligand docking pipeline:

#import RDKit AllChem
from rdkit import Chem
from rdkit.Chem import AllChem


#load original molecule from smiles
SMILES_STRING = "CCCCCCCCC" #the smiles string of your ligand
template = Chem.MolFromSmiles(SMILES_STRING)

#load the docked pose as a PDB file
loc_of_docked_pose = "docked_pose_mol.pdb" #file location of the docked pose converted to PDB file
docked_pose = AllChem.MolFromPDBFile(loc_of_docked_pose)

#Assign the bond order to force correct valence
newMol = AllChem.AssignBondOrdersFromTemplate(template, docked_pose)

#Add Hydrogens if desired. "addCoords = True" makes sure the hydrogens are added in 3D. This does not take pH/pKa into account. 
newMol_H = Chem.AddHs(newMol, addCoords=True)

#save your new correct molecule as a sdf file that encodes for bond orders correctly
output_loc = "docked_pose_assigned_bond_order.sdf" #output file name
Chem.MolToMolFile(newMol_H, output_loc)

Fragment Based Drug Discovery with Crystallographic Fragment Screening at XChem and Beyond

Disclaimer: I’m a current PhD student working on PanDDA 2 for Frank von Delft and Charlotte Deane, and sponsored by Global Phasing, and some of this is my opinion – if it isn’t obvious in one of the references I probably said it so take it with a pinch of salt

Fragment Based Drug Discovery

Principle

Fragment based drugs discovery (FBDD) is a technique for finding lead compounds for medicinal chemistry. In FBDD a protein target of interest is identified for inhibition and a small library, typically of a few hundred compounds, is screened against it. Though these typically bind weakly, they can be used as a starting point for chemical elaboration towards something more lead-like. This approach is primarily contrasted with high throughput screening (HTS), in which an enormous number of larger, more complex molecules are screened in order to find ones which bind. The key idea is recognizing that the molecules in these HTS libraries can typically be broken down into a much smaller number of common substructures, fragments, so screening these ought to be more informative: between them they describe more of the “chemical space” which interacts with the protein. Since it first appeared about 25 years ago, FBDD has delivered four drugs for clinical use and over 40 molecules to clinical trials.

Continue reading

How to turn a SMILES string into a molecular graph for Pytorch Geometric

Despite some of their technical issues, graph neural networks (GNNs) are quickly being adopted as one of the state-of-the-art methods for molecular property prediction. The differentiable extraction of molecular features from low-level molecular graphs has become a viable (although not always superior) alternative to classical molecular representation techniques such as Morgan fingerprints and molecular descriptor vectors.

But molecular data usually comes in the sequential form of labeled SMILES strings. It is not obvious for beginners how to optimally transform a SMILES string into a structured molecular graph object that can be used as an input for a GNN. In this post, we show how to convert a SMILES string into a molecular graph object which can subsequently be used for graph-based machine learning. We do so within the framework of Pytorch Geometric which currently is one of the best and most commonly used Python-based GNN-libraries.

We divide our task into three high-level steps:

  1. We define a function that maps an RDKit atom object to a suitable atom feature vector.
  2. We define a function that maps an RDKit bond object to a suitable bond feature vector.
  3. We define a function that takes as its input a list of SMILES strings and associated labels and then uses the functions from 1.) and 2.) to create a list of labeled Pytorch Geometric graph objects as its output.
Continue reading

A quantitative way to measure targeted protein degradation

Whenever we order consumables in the Chemistry department, the whole lab gets an email notification once they arrive. So I can understand why I got some puzzled reactions from my colleagues when one such email arrived saying that my ‘artichoke’ was ready to collect from stores. Had I been sneakily doing my grocery shopping on a university research budget?

Artichoke is, in fact, the name of a plasmid designed by the Ebert lab (https://www.addgene.org/73320/), which I have been using in some of my research on targeted protein degradation. The premise is simple enough: genes for two different fluorescent proteins, one of which is fused to a protein-of-interest.

Continue reading

Stochastic chemical kinetics – things randomly bumping into each other

In this blog post I describe the advantages of taking a stochastic view of chemical systems based on the work of D. T. Gillespie and subsequent publications. Gillespie presented his formalism for considering stochastic chemical kinetics, now referred to as the Gillespie Algorithm, in two papers published in 1976 and 1977 (Gillespie, D. T. J. Comp. Phys. 1976, Gillespie D. T. J. Phys. Chem. 1977) – if you want to see the full derivation for the Gillespie Algorithm along with many examples I recommend giving them both a read.

The essential question of chemical kinetics as stated by Gillespie is:

“If a fixed volume V contains a spatially uniform mixture of N chemical species which can inter-react through M specified chemical reaction channels, then given the numbers of molecules of each species present at some initial time, what will these molecular population levels be at any later time?”

Continue reading

Model validation in Crystallographic Fragment Screening

Fragment based drug discovery is a powerful technique for finding lead compounds for medicinal chemistry. Crystallographic fragment screening is particularly useful because it informs one not just about whether a fragment binds, but has the advantage of providing information on how it binds. This information allows for rational elaboration and merging of fragments.

However, this comes with a unique challenge: the confidence in the experimental readout, if and how a fragment binds, is tied to the quality of the crystallographic model that can be built. This intimately links crystallographic fragment screening to the general statistical idea of a “model”, and the statistical ideas of goodness of fit and overfitting.

Continue reading