Journal Club: Human Germline Antibody Gene Segments Encode Polyspecific Antibodies

This week’s paper by Willis et al. sought to investigate how our limited antibody-encoding gene repertoire has the ability to recognise the unlimited array of antigens. There is a finite number of V, D, and J genes that encode our antibodies, but it still has the capacity to recognise an infinite number of antigens. Simply, the authors’ notion is that an antibody from the germline (via V(D)J recombination; see entry by James) is able to adopt multiple conformations, thus allowing the antibody to bind multiple antigens.

Three antibodies derived from the germline gene 5*51-01, all binding to very different antigens.

Three antibodies derived from the germline gene 5*51-01 bind to very different antigens.

To test this hypothesis, the authors performed a multiple sequence alignment for the amino acid sequence between the mature antibodies and the germline antibody sequence from which the antibodies are derived from. if a single position from ONE mature antibody showed a difference to the germline sequence, it was identified as a ‘variable’ position, and allowed to be changed by Rosetta’s multi-state design (MSD) and single-state design (SSD) protocols.

Pipeline: align mature antibodies (2XWT, 2B1A, 3HMX) to the germline sequence (5-51) , identify 'variable' positions from the alignment, then allow Rosetta to change those residues during design.

Figure 1) from Willis et al., showing the pipeline: align mature antibodies (2XWT, 2B1A, 3HMX) to the germline sequence (5-51) , identify ‘variable’ positions from the alignment, then allow Rosetta to change those residues.

Surprisingly, without any prior information of the germline sequence, the MSD yielded a sequence that was closer to the germline sequence, and the SSD for each mature antibody had retained the mature sequence. In short, this indicated that the germline sequence is a harmonising sequence that can accommodate the conformations of each of the mature antibodies (as proven by MSD), whereas the mature sequence was the lowest energy amino acid sequence for the particular antibody’s conformation (as proven by SSD).

To further demonstrate that the germline sequence is indeed the more ‘flexible’ sequence, the authors then aligned the mature antibodies and determined the deviation in ψ-ϕ angles at each of the variable positions that were used in the Rosetta study. They found that the ψ-ϕ angle deviation in the positions that recovered to the germline residue was much larger than the other variable positions along the antibody. In other words, for the positions that tend to return to the germline amino acid in MSD, the ψ-ϕ angles have a much larger degree of variation compared to the other variable positions, suggesting that the positions that returned to the germline amino acid are prone to lots of movement.

In addition to the many results that corroborate the findings mentioned in this entry, it’s neat that the authors took a ‘backwards’ spin to conventional antibody design. Most antibody design regimes aim to find amino acid(s) that give the antibody more ‘rigidity’, and hence, mature its affinity, but this paper went against the norm to find the most FLEXIBLE antibody (the most likely germline predecessor*). Effectively, they argue that this type of protocol can be exported to extract new antibodies that can bind to multiple antigens, thus increasing the versatility of antibodies as potential therapeutic agents.

Journal Club: Large-scale analysis of somatic hypermutations

This week I presented a paper by Burkovitz et al from Bar Ilan University in Israel.  The study investigates the mutations that occur in B-cell maturation and how the propensity for a change to be selected is affected by where in the antibody structure it is located. It nicely combines analysis of both DNA and amino-acid sequence with structural considerations to inform conclusions about how in vivo affinity maturation occurs.

Before being exposed to an antigen, an antibody has a sequence determined by a combination of genes (V and J for the light chain; V, D and J for the heavy chain). Once exposed, B-cells (the cells that produce antibodies), undergo somatic hyper-mutation (SHM) to optimise the antibody-antigen (ab-ag) interaction. These mutations are commonly thought to be promoted at activation-induced deaminase (AID) hotspots.

The authors’ first finding is that the locations of SHMs do not correlate well with the positions of AID hotspots and that the distribution of their distance to a hotspot is not much different to that of the background distribution. They conclude that although perhaps a mechanism to promote mutation, AID hotspots are not a strong factor that indicate whether a mutation will fix.

Motivated to find other determinants for SHM preferences, the study turns to examining structural features and energetics of the molecules. SHMs are found to be more prevalent on the VH domain of an Fv than the VL. However, when present, the energetic importance of an SHM is not related to the domain it is on. In contrast, the contribution an SHM makes to the binding energy is related to its structural location. As one might perhaps expect, those SHMs in positions that can make contact with the antigen have more affect than those that do not. Consideration of their propensity instead of raw frequency also shows that SHMs are more prevalent in antibody-antigen interfaces than in the rest of the molecule. However, they are also likely to occur in the VH-VL interface suggesting an importance for this region in fine-tuning the geometry and flexibility of the binding site.

figure

Figure taken from Burkovitz et al shows a) the location of different structural regions on the Fv b) the energetic contribution of the SHMs in each region c) the fraction of SHMs in the regions and their relative size d) the propensity for an SHM to occur in each of the five structural regions.

Perhaps the most interesting result of this study is the authors’ conclusions about the propensity of SHMs to mutate germline residues to particular amino-acids. It is found that whilst germline amino-acid usage in binding sites is distinctive from other protein-protein interfaces, the residue profiles of SHMs are less diverged. They therefore act to bring the properties ab-ag interaction towards those seen in normal interactions. This may suggest, as proposed by other studies, that the somatic hyper-mutation process is similar to mutation properties observed in evolution. In addition, it is found that five amino-acids, asparagine, arginine, serine, threonine and aspartic acid are the most common substitutions made in SHM. Finally, positions where SHMs most often have an important effect on binding energy are presented. These positions, and the amino-acid preferences provide promising targets for use in rational antibody design procedures.

Journal Club: Quantification and functional analysis of modular protein evolution in a dense phylogenetic tree

For journal club this week I decided to look at a paper by Moore et al. on the modular evolution of proteins.

Modular evolution, or the rearrangement of the domain architecture of a protein, is one of the key drivers behind functional diversification in the protein universe. I used the example in my talk of the multi-domain protein Peptidase T, which contains a catalytic domain homologous to Carboxypeptidase A, a zinc dependent protease. The additional domain in Peptidase T induces the formation of a dimer, which restricts the space around the active site and so affects the specificity of the enzyme.

peptidase_t

The multi-domain protein Peptidase T in a dimer (taken from Bashton and Chothia 2007). The active site is circled in green. Carboxypeptidase A is made up of a single domain homologous to the catalytic domain (in blue) of Peptidase T.

 
I took this case study from a really interesting paper, The generation of new protein functions by the combination of domains (Bashton and Chothia, 2007), which explores several other comparisons between the functions of multi-domain proteins and their single domain homologues.

What this paper does not address however is the directionality of such domain reorganisations. In all these examples, it is not clear whether the multi-domain organisation has evolved from the single domain enzyme or vice versa. Which brings me back to the paper I was presenting on, which attempts a reconstruction of domain arrangements followed by a categorisation of rearrangement events.

Essentially, given a phylogenetic tree of 20 closely related pancrustacean species, the paper takes the different domain arrangements on the genomes (step 1), assigns the presence or absence of each arrangement at interior nodes on the tree (step 2), and then assigns each gained arrangement to one of four possible rearrangement events (step 3).

1. Domain Annotation
The authors use different methods to annotate domains on the genomes. They conclude the most effective methodology is to use the clan level (where families with suspected homologies are joined together… similar to our beloved superfamily classification) of Pfam-A (high quality family alignments with a manually chosen seed sequence). Moreover, they collapse any consecutive stretches of identical domains into one “pseudo-domain”, eliminating the effect of the domain repeat number on an arrangement’s definition.

2. Ancestral State Reconstruction
The ancestral state reconstruction of each domain arrangement (it’s presence/absence at each internal node on the tree) is a result of a 2-pass sweep across the tree: the first from leaves to root, and the second from the root to the leaves. On the first pass the presence of an arrangement on a parent node is decided by majority rule on the state of its children. If the arrangement is present in one child node but absent in the other, the state at the parent node is defined as uncertain. Any uncertain child nodes have a neutral impact on their parent node’s state (i.e. if a parent has a child with the arrangement and a child with an uncertain state the arrangement will be annotated as present in the parent node). On the second pass (from root to leaves) uncertain nodes are decided by the state at their parent node. An uncertain arrangement at the root will be annotated as present. For more details and a clearer explanation see Box 1 in the figure below.

FigureS2

A schematic for the assignment of domain recombination events. Box 1 gives the algorithm for the ancestral state reconstruction. Figure S2 from Moore et al. 2013.

3. Rearrangement events
For each gained event on a particular branch, the authors then postulated one of four simple rearrangement events dependent on the arrangements on the parent’s predicted proteome.

i) Fusion: A gained domain arrangement (A,B,C) on a child’s proteome is the result of fusion if the parent’s proteome contains both the arrangements (A,B) AND (C) (as one example).
ii) Fission: A gained arrangement (A,B,C) is the result of fission if the parent contains the arrangement (A,B,C,D) AND the child also contains the arrangement (D).
iii) Terminal Loss: A gained arrangement (A,B,C) is the result of terminal loss if the parent contains the arrangement (A,B,C,D) AND the child does not contain the arrangement (D).
iv) Domain gain: A gained arrangement (A,B,C) is the result of domain gain if the parent contains (A,B) but not (C).

Any gained arrangement which cannot be explained by these cases (as a single-step solution) is annotated as having no solution.

Results

The authors find, roughly speaking, that the domain arrangements they identify fall into a bimodal distribution. The vast majority are those which are seen on only one genome, of which over 80% are multi-domain arrangements. There are also a sizeable number of arrangements seen on every single genome, the vast majority of which are made up of a single domain. I do wonder though, how much of this signal is due to the relative difficulty of identifying and assigning multiple different domains compared to just a single domain. While it seems unlikely that this would explain the entirety of this observation (on average, 75% of proteins per genome were assigned) it would be interesting to have seen how the authors address this possible bias.

Interestingly, the authors also find a slight inflation in fusion events over fission events across the tree (around 1 more per million years), although there are more fusion events nearer the root of the tree, with fission dominating nearer the leaves, and in particular, on the dense Drosophila subtree.

Finally, the authors performed a functional term enrichment analysis on the domain arrangements gained by fusion and fission events and showed that, in both cases, terms relating to signalling were significantly overrepresented in these populations, emphasising the potential importance that modular evolution may play in this area.

Efficient discovery of overlapping communities in massive networks

Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In the paper by Gopalan et al. discussed in this week’s group meeting, a scalable approach to community detection is developed that discovers overlapping communities in massive real-world networks. The approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities.

The model assumes there are K communities and that each node i is associated with a vector of community memberships \theta_i. To generate a network, the model considers each pair of nodes. For each pair (i,j), it chooses a community indicator z_{i \rightarrow j} from the i^{th} node’s community memberships \theta_i and then chooses a community indicator z_{i \leftarrow j} from \theta_j. A connection is then drawn between the nodes with probability \beta if the indicators point to the same community or with a smaller probability \epsilon if they do not.

This model defines a joint probability p(\theta,\beta,z,y) where y is the observed data. To estimate the posterior p(\theta,beta,z | y), the method uses a stochastic variational inference algorithm. This enables posterior estimation using only a sample of all-possible node pairs at each step of the variational inference, making the method applicable to very large graphs (e.g analyzing a large citation network of physics papers shown in the figure below identifies important papers impacting several sub-disciplines).

Community detection in a physics citation network.

Community detection in a physics citation network.

One limitation of the method is that it does not incorporate automatic estimation of the number of communities, which is a general problem with clustering algorithms. Still, enabling sophisticated probabilistic analysis of structure in massive graphs is a significant step forward.

How many bins?

As it’s known in non-parametric kernel density estimation the effect of the bandwidth on the estimated density is large and it is usually the parameter who makes the tradeoff between bias and roughness of the estimation (Jones et.al 1996). An analogous problem for histograms is the choice of the bin length and in cases of equal bin lengths the problem can be seen as finding the number of bins to use.  A data-base methodology for building equal bin-length histograms proposed by (Knuth 2013) based on the marginal of the joint posterior of the number of bins and heights of the bins. To build the histogram first the number of bins has to be selected as the the value (\hat{M} ) that maximises the following posterior distribution for the number of bins:
P(M|d,I)\, \alpha \,(M/V)^N \frac{\Gamma(M/2) \prod_{k=1}^M \Gamma(n_k+1/2)}{\Gamma(1/2)^M \Gamma(N+M/2)}

where M is the number of bins, d is the data, I is prior knowledge about the problem, i.e. in particular the use of equal length bins and the range of data V, which has the relation V=Mw where w is the width of bins, N is the number of data points and n_k is the number of observations that fall in the kth bin.

Now, the height (h_k) of the bins of the histogram is given by:
h_k=\frac{M}{V} \frac{n_k+1/2}{N+M/2}.

In the case of a normal distribution the authors suggest a sample of 150 data points to “accurately and consistently estimate the shape of the distribution”.

The following figure shows the relative log-posterior of the number of bins (left) and the estimated histogram for a mixture of three normal samples and a uniform [0,50] (right).

Optimal binning

Knuth, K. H. (2013). Optimal data-based binning for histograms. arXiv preprint physics/0605197. The first version of this paper was published on 2006.

Jones, M. C., Marron, J. S., and Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association,91(433), 401–407.

Annotate Antibody CDR and Framework Residues

Intro

Antibodies have very well conserved structures and their binding site is chiefly comprised of the six CDRs. The great similarity between the 1700+ antibody structures that can be found in SAbDab/PDB prompted the introduction of numbering schemes which act as coordinates with respect to the sequence/structural features of antibodies. The earliest such numbering scheme was introduced by Wu and Kabat, followed by the structurally informed Chothia-scheme which was eventually amended by Abhinandan and Martin. Even though there are several of those schemes, the one currently endorsed by the World Health Organization (WHO) is this of IMGT.

The Program Downolad.

It annotates the framework and CDR residues according to three definitions: Kabat, Chothia or Contact. You can download it here.

Possible issues?

You need internet connection for this program to work since it calls the Abnum service, thus you should cite the following if you use this code:

Abhinandan, K.R. and Martin, A.C.R. (2008) Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains Molecular Immunology, 45, 3832-3839.

How to use it?

As an example test case, type the following in the Framer directory:

python Framer.py --f 1A2Y.pdb --c AB --o my_first_output --d chothia

This should get the the heavy and light chains of 1A2Y (A and B) and leave the output in a folder called my_first_outupt.

Options:

–f: Antibody file
–c: Antibody chains (you can submit just one or several)
–o: Output folder name – NB this is going to be created in the directory you call Framer from!
–d: CDR definition to be used, possible options are: chothia, kabat and contact.

Output files:

There are four output files:

red_blue.pdb: The pdb with b-factor colored CDRs. The CDRs have B-factor of 100.00 and the framework 0.00.
paratope.txt: The CDR residues, given in the format [id][whitespace][chain]
framework.txt: The Framework residues, given in the format [id][whitespace][chain]
full_info.txt: Full breakdown of the annotation given in the format:

Original ID Original Chain AA Chothia ID CDR(FR=frame,or CDR id)

 

Journal club: Half a century of Ramachandran plots

In last week’s journal club we delved into the history of Ramachandran plots (Half a century of Ramachandran plots; Carugo & Djinovic-Carugo, 2013).

Polypeptide backbone dihedral angles

Polypeptide backbone dihedral angles. Source: Wikimedia Commons, Bensaccount

50 years ago Gopalasamudram Narayana Ramachandran et al. predicted the theoretically possible conformations of a polypeptide backbone. The backbone confirmations can be described using three dihedral angles: ω, φ and ψ (shown to the right).

The first angle, ω, is restrained to either about 0° (cis) or about 180° (trans) due to the partial double bond character of the C-N bond. The φ and ψ angles are more interesting, and the Ramachandran plot of a protein is obtained by plotting φ/ψ angles of all residues in a scatter plot.

The original Ramachandran plot showed the allowed conformations of the model compound N-acetyl-L-alanine-methylamide using a hard-sphere atomic model to keep calculations simple. By using two different van der Waals radii for each element positions on the Ramachandran plot could be classified into either allowed regions, regions with moderate clashes and disallowed regions (see Figure 3 (a) in the paper).

The model compound does not take side chains into account, but it does assume that there is a side chain. The resulting Ramachandran plot therefore does not describe the possible φ/ψ angles for Glycine residues, where many more conformations are plausible. On the other end of the spectrum are Proline residues. These have a much more restricted range of possible φ/ψ angles. The φ/ψ distributions of GLY and PRO residues are therefore best described in their own Ramachandran plots (Figure 4 in the paper).

Over time the Ramachandran plot was improved in a number of ways. Instead of relying on theoretical calculations using a model compound, we can now rely on experimental observations by using high quality, hand picked data from the PDB. The way how the Ramachandran plot is calculated has also changed: It can now be seen as a two-dimensional, continuous probability distribution, and can be estimated using a full range of smoothing functions, kernel functions, Fourier series and other models.
The modern Ramachandran plot is much more resolved than the original plot. We now distinguish between a number of well-defined, different regions which correlate with secondary protein structure motifs.

Ramachandran plots are routinely used for structure validation. The inherent circular argument (A good structure does not violate the Ramachandran plot; The plot is obtained by looking at the dihedral angles of good structures) sounds more daring than it actually is. The plot has changed over time, so it is not as self-reinforcing as one might fear. The Ramachandran plot is also not the ultimate guideline. If a new structure is found that claims to violate the Ramachandran plot (which is based on a huge body of cumulative evidence), then this claim needs to be backed up by very good evidence. A low number of violations of the plot can usually be justified. The Ramachandran plot is a local measure. It therefore does not take into account that domains of a protein can exert a force on a few residues and just ‘crunch’ it into an unusual conformation.

The paper closes with a discussion of possible future applications and extensions, such as the distribution of a protein average φ/ψ and an appreciation of modern web-based software and databases that make use of or provide insightful analyses of Ramachandran plots.

Link

Journal club (Bernhard Knapp): NetMHCIIpan-3.0

This week’s topic of the Journalclub was about the prediction of potential T cell epitopes (=prediction of the binding affinity between peptides and MHC). In this context I presented the latest paper in the NetMHCpan series:

Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics. 2013 Oct;65(10):711-24

The reliable prediction of the peptide/MHC binding affinity is already a scientific aim for several years: Early approaches were based on the concept of anchor residues i.e. those peptide side-chain which are pointing in the direction of the MHC. The next “generation” of methods was matrix based i.e. it was simply counted how likely it is that a specific residue is at peptide position 1, 2, 3, … for binding and non-binding peptides of a specific MHC allele. In the next step methods started to incorporate higher order approaches i.e. positions within the peptide influence each other (e.g. SVM, ANN, …). While such methods are already quite reliable their major limitation is that they can only be trained on the basis of sufficient experimental binding data per allele. Therefore a prediction for alleles with only few experimental peptide binding affinities is not possible or rather poor in quality. This is especially import because there are several thousand HLA alleles: The latest version of the IPD – IMGT/HLA lists for example 1740 HLA Class I A and 2329 HLA Class I B proteins (http://www.ebi.ac.uk/ipd/imgt/hla/stats.html). Some of them are very frequent and others are not but this the aim would be a 100% coverage.

Pan specific approaches go one step further and allow the binding prediction between peptide and an arbitrary MHC allele for which the sequence is known. The NetMHCpan approach is one of them and is based on the extraction of a pseudo sequence (those MHC residues which are in close proximity to the peptide) per MHC allele. Subsequently this MHC pseudo sequence as well as the peptide sequences are encoded using some algorithm e.g. a BLOSUM matrix. Finally the encoded sequences and the experimental binding affinities are fed into an Artificial Neural Network (ANN). For an illustration of the workflow see:

NetMHCpan workflow
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981877/bin/1745-7580-6-S2-S3-2.jpg

This approach turned out to be quite successful and (not too much) depending on the allele the area under ROC reaches in average a healthy 0.8x number which is already quite competitive with experimental approaches.

The netMHCpan series has progressed over the last years starting to cover MHC class I in humans (2007) and beyond (2009). Then MHC class II DR (2010) and in the latest version also DP and DQ (2013). With the next paper expected to be about non human MHC class II alleles the prediction of the binding affinity between peptides and pretty much every MHC should be possible.

AH^AH – Alpha Helices Assessed by Humans.

Can you help our research, by sparing about 15 minutes of your time to participate in our crowd-sourcing experiment? Click here!

We have created a game-like web-application to classify protein helices. If you participate it will take you about 15 minutes and afterwards we will show you the relation between your results and all other participants. You do not need any specific training to participate – your natural human puzzle solving skills are sufficient. Try to beat the others!

blog3

We are interested in kinked α-helices in proteins. Kinks are important for protein function, and understanding them will help to treat and design therapies for diseases. One hindrance to our work is that helix kinks are not well defined – there are many helices that are classed as kinked by some scientists, but not by others. Classifying helices as kinked or curved or straight is difficult computationally. There are lots of different way to do it, but they all give different answers. We think that humans can do it better.

Can you help us by sparing about 15 minutes of your time to assess some α-helices? Click here!

Edit: To participate in this, you need to register. While the data will be made anonymous, registration is required for a number of reasons. It allows you to log back in, and view you results at a later date, it gives us a record that you have participated (so that we can acknowledge your help), and it allows us to compare the results from people with different educational backgrounds. There are also some legal reasons, and it is much more simple if we can record that you have agreed to the privacy and cookies policy, and do not have to ask permission every time you return. We will not pass your data on to third parties, and the data is stored securely (and the passwords encrypted).

Wilcoxon-Mann-Whitney test and a small sample size

The Wilcoxon Mann Whitney test (two samples), is a non-parametric test used to compare if the distributions of two populations are shifted , i.e. say f_1(x) =f_2(x+k) where k is the shift between the two distributions, thus if k=0 then the two populations are actually the same one. This test is based in the rank of the observations of the two samples, which means that it won’t take into account how big the differences between the values of the two samples are, e.g. if performing a WMW test comparing S1=(1,2) and S2=(100,300) it wouldn’t differ of comparing S1=(1,2) and S2=(4,5). Therefore when having a small sample size this is a great loss of information.

Now, what happens when you perform a WMW test on samples of size 2 and 2 and they are as different as they can be (to what the test concerns), lest say S1=(1,2) and S2=(4,5). Then the p-value of this test would be 0.333, which means that the smallest p-value you can obtain from a WMW test when comparing two samples of size 2 and 2 is 0.3333. Hence you would only be able to detect differences between the two samples when using a level of significance greater than 0.333 .

Finally you must understand that having a sample of two is usually not enough for a statistical test. The following table shows the smallest  p-value for different small sample sizes when the alternative hypothesis is two sided. (Values in the table are rounded).

Screen Shot 2015-01-20 at 10.50.56