*** Disclaimer: This blog post represents some shameless self-promotion. ***
I am delighted to announce that our most recent work, DeLinker, was recently published in the Journal of Chemical Information and Modeling (link).

*** Disclaimer: This blog post represents some shameless self-promotion. ***
I am delighted to announce that our most recent work, DeLinker, was recently published in the Journal of Chemical Information and Modeling (link).
General MacroMocelecular I/O, or GEMMI, is a C++ 11 header only library for low level crystalographic .
Because its header only it is certainly the easiest to access and use low level crystalographic C++ library, however GEMMI comes with python binding via Pybind11, making it arguably the easiest low level crystalographic library to access and use in python as well!
What follows is a cookbook of useful Python code that uses GEMMI to accomplish macromolecular crystalographic tasks.
Continue readingAntibody convergence is the presence of similar antibodies in different individuals – suggesting that the individuals have had exposure to a common antigen, which has stimulated the production of similar, antigen-specific antibodies. We want to be able to identify these shared antibodies, sometimes referred to as ‘public clones’, as it could lead to development of immunodiagnostic tests against the shared antibodies, and potentially assist in the design of vaccines and therapeutic antibodies. A recent paper on bioRxiv by Sai Reddy’s group[i] has applied deep learning techniques – variational autoencoders (VAE) and support vector machines (SVM) – to the problem of how to identify shared antibodies.
Continue readingWith the university now working remotely, and our group working entirely on linux systems, I figured that now would be a good time to share some useful SSH commands to streamline remote access. This is far from an exhaustive list, but will hopefully serve as a useful starting point for anybody who finds themself needing to work remotely on a linux system.
Continue readingHello friends of OPIG,
From my last blopig blog post [link: https://www.blopig.com/blog/2019/10/comparative-analysis-of-the-cdr-loops-of-antigen-receptors/], I summarised our findings that TCR CDRs are more flexible than their antibody counterparts. Because of this observation, we believe that it is more appropriate to represent TCR binding sites using an ensemble of conformations.
Continue readingWe are going virtual! Our next Comp Chem Kitchen, CCK-18, will be via a Zoom Webinar, on Friday, March 27, 2020, at 5-6 pm. We are delighted to announce that Prof. Andreas Bender from the University of Cambridgewill be speaking, as well as Dr Vicky Hellon from F1000 Research. To attend the CCK-18 webinar, you must sign up for a free Eventbrite ticket (limit 100).
Picture this: You’re a zealous acolyte of the metric system, with a rare affliction that makes multiplying decimal numbers impossible. You’re on holiday in the UK, where road signs give distances in miles. Heathens! How can you efficiently estimate the number of kilometres without multiplying by approximately 1.60934?
Continue readingLarge high-dimensional data sets are frequently used in chemical and biological sciences. For example the ChEMBL database contain millions of bioactive molecules from the scientific literature and their associated biological assay data are usually used for drug discovery. Visualising such databases helps understand the structure of data.
Continue readingOur collaborator, Prof. Geoff Hutchison from the University of Pittsburg recently took part in the Royal Society of Chemistry’s 2020 Twitter Poster Conference, to highlight the great work carried out by one of my DPhil students, Lucian Leung Chan, on the application of Bayesian optimization to conformer generation:
Scientific code is never fast enough. We need the results of that simulation before that pressing deadline, or that meeting with our advisor. Computational resources are scarce, and competition for a spot in the computing nodes (cough, cough) can be tiresome. We need to squeeze every ounce of performance. And we need to do it with as little effort as possible.
Continue reading