Community structure in multilayer networks


Multilayer networks are a generalisation of network that may incorporate different types of interactions [1]. This could be different time points in temporal data, measurements in different individuals or under different experimental conditions. Currently many measures and methods from monolayer networks are extended to be applicabile to multilayer networks. Those include measures of centrality [2], or methods that enable to find mesoscale structure in networks [3,4].

Examples of such mesoscale structure detection methods are stochastic block models and community detection. Both try to find groups of nodes that behave structurally similar in a network. In its most simplistic way you might think of two groups that are densely connected internally but only sparsely between the groups. For example two classes in a high school, there are many friendships in each class but only a small number between the classes. Often we are interested in how such patterns evolve with time. Here, the usage of multilayer community detection methods is fruitful.


From [4]: Multislice community detection of U.S. Senate roll call vote similarities across time. Colors indicate assignments to nine communities of the 1884 unique senators (sorted vertically and connected across Congresses by dashed lines) in each Congress in which they appear. The dark blue and red communities correspond closely to the modern Democratic and Republican parties, respectively. Horizontal bars indicate the historical period of each community, with accompanying text enumerating nominal party affiliations of the single-slice nodes (each representing a senator in a Congress): PA, pro-administration; AA, anti-administration; F, Federalist; DR, Democratic-Republican; W, Whig; AJ, anti-Jackson; A, Adams; J, Jackson; D, Democratic; R, Republican. Vertical gray bars indicate Congresses in which three communities appeared simultaneously.

Mucha et al. analysed the voting pattern in the U.S. Senate [4]. They find that the communities are oriented as the political party organisation. However, the restructuring of the political landscape over time is observable in the multilayered community structure. For example, the 37th Congress during the beginning of the American Civil War brought a major change in the voting patterns. Modern politics is dominated by a strong partition into Democrats and Republicans with third minor group that can be identified as the ‘Southern Democrats’ that had distinguishable voting patterns during the 1960.

Such multilayer community detection methods can be insightful for networks from other disciplines. For example they have been adopted to describe the reconfiguration in the human brain during learning [5]. Hopefully they will be able to give us insight in the structure and function of protein interaction.

[1] De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; and Arenas, Alex [2013]. Mathematical Formulation of Multilayer NetworksPhysical Review X, Vol. 3, No. 4: 041022.

[2] Taylor, Dane; Myers, Sean A.; Clauset, Aaron; Porter, Mason A.; and Mucha, Peter J. [2016]. Eigenvector-based Centrality Measures for Temporal Networks

[3]  Tiago P. Peixoto; Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Phys. Rev. E 92, 042807

[4] Mucha, Peter J.; Richardson, Thomas; Macon, Kevin; Porter, Mason A.; and Onnela, Jukka-Pekka [2010]. Community Structure in Time-Dependent, Multiscale, and Multiplex NetworksScience, Vol. 328, No. 5980: 876-878.

[5] Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Carlson, Jean M.; and Grafton, Scott T. [2011]. Dynamic Reconfiguration of Human Brain Networks During LearningProceedings of the National Academy of Sciences of the United States of America, Vol. 118, No. 18: 7641-7646.