Tag Archives: Clustering

Memory Efficient Clustering of Large Protein Trajectory Ensembles

Molecular dynamics simulations have grown increasingly ambitious, with researchers routinely generating trajectories containing hundreds of thousands or even millions of frames. While this wealth of data offers unprecedented insights into protein dynamics, it also presents a formidable computational challenge: how do you extract meaningful conformational clusters from datasets that can easily exceed available system memory?

Traditional approaches to trajectory clustering often stumble when faced with large ensembles. Loading all pairwise distances into memory simultaneously can quickly consume tens or hundreds of gigabytes of RAM, while conventional PCA implementations require the entire dataset to fit in memory before decomposition can begin. For many researchers, this means either downsampling their precious simulation data or investing in expensive high-memory computing resources.

The solution lies in recognizing that we don’t actually need to hold all our data in memory simultaneously. By leveraging incremental algorithms and smart memory management, we can perform sophisticated dimensionality reduction and clustering on arbitrarily large trajectory datasets using modest computational resources. Let’s explore how three key strategies—incremental PCA, mini-batch clustering, and intelligent memory management—can transform your approach to analyzing large protein ensembles.

Continue reading

How to interact with small molecules in Jupyter Notebooks

The combination of Python and the cheminformatics toolkit RDKit has opened up so many ways to explore chemistry on a computer. Jupyter — named for the three languages, Julia, Python, and R — ties interactivity and visualization together, creating wonderful environments (Notebooks and JupyterLab) to carry out, share and reproduce research, including:

“data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.”

—https://jupyter.org

At this year’s annual RDKit UGM (User Group Meeting), Cédric Bouysset shared a tutorial explaining how to create a grid of molecules that you can interact with, using his “mols2grid“:

Continue reading