Speaking about Sequence and Structure at a Summit

A couple of weeks ago I was lucky enough to be asked to speak at the 5th Computational Drug Discovery & Development for Biologics Summit. This was my first virtual conference – it was a shame I didn’t get to visit Boston, and presenting to my empty room was slightly bizarre, but it was great to hear what people have been working on, and there’s definitely something to be said for attending a conference in fluffy socks…

A, antibody structure. An antibody is made up of four chains: two light (orange) and two heavy (blue). Each chain is made up of a series of domains—the variable domains of the light and heavy chains together are known as the Fv region (shown on the right; PDB entry 12E8). The Fv features six loops known as complementarity determining regions or CDRs (shown in dark blue); these are mainly responsible for antigen binding. B, example sequences for the VH and VL, highlighting the CDR regions and the genetic composition. It is estimated that the human antibody repertoire contains up to 1013 unique sequences, enabling the immune system to respond to almost any antigen. This is possible through the recombination of V, D and J gene segments, junctional diversification, and somatic hypermutation.
Continue reading

Improving your Python code quality using git pre-commit hooks

Intro

I recently completed an internship during which I spent a considerable amount of time doing software engineering. One of my main take-aways from this experience was that in industry, a lot more attention is spent on ensuring that code committed to a GitHub repo is clean and bug-free.

This is achieved through several means like code review (get other people to read your code), test-driven development (make sure your code works as you are adding functionality) or paired development (have two people work together on the same piece of code). Here, I will instead focus on a useful tool that is easy to integrate into your existing git workflow: Pre-commit hooks.

Continue reading

The right tool for the job – The Joy of Excel

Excel’s pervasiveness has resulted in it being used (correctly or incorrectly) in just about every area of science.

Unfortunately, Excel has some traps for the new player and unless you’ve fallen for them before, they are not entirely obvious. They stem from the fact that Excel will try to help the user by reformatting data into what it thinks you mean.

Continue reading

Constrained docking for bump and hole methodology

Selectivity is an important trait to consider when designing small molecule probes for chemical biology. If you wish to use a small molecule to study a particular protein, but that small molecule is fairly promiscuous in its binding habits, there are risks that any effects you observe may be due to it binding other proteins with similarly shaped binding pockets, instead of your protein of interest.

Continue reading

It’s been here all along: Analysis of the antibody DE loop

In my work, I mainly look at antigen-bound antibodies and this means a lot of analysing interfaces. Specifically, I spend a lot of my time examining the contributions of complementarity-determining regions (CDRs) to antigen binding, but what about antibodies where the framework (FW) region also contributes to binding? Such structures do exist, and these interactions are rarely trivial. As such, a recent preprint I came across where the authors examined the DE loops of antibodies was a great motivator to broaden my horizons!

Continue reading

Epitope mapping with structural data for SARS-CoV-2 RBD and 10 known binders

In the past few months we have seen a lot of papers reporting antibodies that they found to bind to SARS-CoV-2 (a database can be found here: http://opig.stats.ox.ac.uk/webapps/covabdab/). Some of them were from the analysis of a patient’s immune system. Some of them come with crystal structures to show where they bind. Some don’t have structures, but they have the sequences and some competition assay data to show approximately where on the spike protein they bind. The main focus is around an area called the Receptor Binding Domain (RBD) which is where the spike protein engages the human ACE2 receptor and causes the downstream problems. In this paper, the authors ran a complete mutagenesis on the RBD of the SARS-CoV-2 spike protein. 

Continue reading