Category Archives: Protein Structure

Coronavirus

A zoonosis is an infectious disease that has jumped from a non-human animal to humans.

A painting by David S. Goodsell showing coronavirus in pink and purple. Secreted mucus (greenish threads) and antibodies (yellow/orange Y-shapes), and several small immune systems proteins (orange) from the lungs’ respiratory cells surround it. © 2020, David S. Goodsell.

The coronavirus disease 2019 (COVID-19) is one such zoonosis, and is caused by severe acute respiratory syndrome coronavirus 2 (SARS coronavirus 2, SARS-CoV-2, or 2019-nCoV). This is very similar to the SARS virus that emerged in 2003. Its recent emergence has resulted in a WHO-declared public health emergency of international concern.

Continue reading

The evolution of contact prediction – a new paper

I’m so pleased to be able to write about our work on The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing (Bioinformatics btz816). Contact prediction – the prediction of parts of the amino-acid chain that are close together – has been critical to improving the ability of scientists to predict protein structures over the last decade. Here we look at the properties of these predictions, and what that might mean for their use.

The paper begins with a question. If contact prediction methods are based on statistical properties of sequence alignments, and those alignments are generated in the presence of ecological and physical constraints, what effect do the physical constraints have on the statistical properties of real sequence alignments? More concisely: when we predict contacts, do we predict particularly important contacts?

Continue reading

What are Hotspots in Structural Biology?

“Hotspot” is one of those extremely versatile words, similar to “model” and “buffer”, which can mean a variety of things depending on context. According to Merriam-Webster, a hotspot is “a place of more than usual interest, activity, or popularity”. This is the most general definition of the concept I could find in a quick search, and the one I find closest in spirit to the way hotspots are perceived in a structural biology context. What this blog post is definitely not about are hotspots as “areas of political, military, or civil unrest” (my experience with them has so far been mostly peaceful), or anything to do with geology, WiFi connections, or forest fires.
However, even within the context of structural biology and structure-based drug design, the word “hotspot” has multiple meanings. In this blog post, I will try to summarise the main ones I have come across, the (sometimes subtle) differences between them, and provide a few useful papers to serve as an entry point for interested readers. Continue reading

Two Tools for Systematically Compiling Ensembles of Protein Structures

In order to know how a protein works, we generally want to know its 3-dimensional structure. We then can either try to solve it ourselves (which requires considerable time, skill, and resources), or look for it in the Protein Data Bank, in case it has already been solved. The vast majority of structures in the Protein Data Bank (PDB) are solved through protein crystallography, and represent a “snapshot” of the conformational space available to our protein of interest. Continue reading