
I recently attended the Learning Meaningful Representations of Life (LMRL) workshop at ICLR 2025. The goal of LMRL is to highlight machine learning methods which extract meaningful or useful properties from unstructured biological data, with an eye towards building a virtual cell. I presented my paper which demonstrates how standard Transformers can learn to meaningfully represent 3D coordinates when trained on protein structures. Each paper submitted to LMRL had to include a “meaningfulness statement” – a short description of how the work presents a meaningful representation.
Continue reading