Ribosome occupancy profiles are conserved between structurally and evolutionarily related yeast domains

Shameless plug for any OPIG blog readers to take a look at our recent publication in Bioinformatics. Consider giving it a read if the below summary grabs your attention.

Many proteins are now known to fold during their synthesis through the process known as co-translational folding. Translation is an inherently non-equilibrium process – one consequence of this fact is that the speed of translation can radically influence the ability of proteins to fold and function. In this paper we compare ribosome occupancy profiles between related domains in yeast to test the hypothesis that evolutionarily related proteins with similar native folds should tend to have similar translation speed profiles to preserve efficient co-translational folding. We find strong evidence in support of this hypothesis at the level of individual protein domains and across a set of 664 pairs of related domains for which we are able to compute high-quality ribosome occupancy profiles.

To find out more, view the Advance Article at Bioinformatics.

Author