Tag Archives: Aggregation

Proteins evolve on the edge of supramolecular self-assembly

Inspired by Eoin’s interesting talks on prions and prion diseases, and Nick’s discussion of how Cyro-Electron microscopy is going to be the end of an era for Crystallography. I thought I’d look at a paper that discusses aggregation of protein complexes, with some cryo-electron microscopy thrown in for good measure.

Supramolecular assembbly

a, A molecule gaining a single self-interacting patch forms a finite dimer. A self-interacting patch repeated on opposite sides of a symmetric molecule can result in infinite assembly. b, A point mutation in a dihedral octamer creates a new self-interacting patch (red), triggering assembly into a fibre.

Supramolecular assemblies are folded protein complexes forming into much larger units. This formation can be triggered by a mutation on a copy of the constituent homomers of the complex, acting as a self-interacting patch. If this patch were to form in a non-symmetric complex, it would likely form a finite assemble with a limited number of copies of the complex. However, if the complex has dihedral symmetry such that a patch is accessible at multiple separated locations, then complex can potentially form near infinite supramolecular assemblies. Continue reading