Is contacts-based protein-protein affinity prediction the way forward?

The binding affinity of protein interactions is useful information for a range of protein engineering and protein-protein interaction (PPI) network challenges. Obvious applications include the development of therapeutic antibodies to given drug targets or the engineering of novel interfaces for synthetic protein complexes. An accurate model would furthermore allow us to predict a large proportion of affinities in existing PPI networks, and enable the identification of new PPIs, which is critical for our ability to model protein network dynamics effectively.


“The design of an ideal scoring function for protein−protein docking that would also predict the binding affinity of a complex is one of the challenges in structural proteomics.” Adapted from Kastritis, Panagiotis L., and Alexandre MJJ Bonvin. Journal of proteome research 9.5 (2010): 2216-2225.

In last week’s paper a new binding-affinity prediction method based on interfacial contact information was described. Contacts have long been used to in docking methods but surprisingly this was the first time that binding affinity was predicted with them. Largely, this was due to the lack of a suitable benchmark data set that contained structural as well as affinity data . In 2011, however, Kastritis et al. presented a curated database of 144 non-redundant protein–protein complexes with experimentally determined Kd (ΔG) as well as x-ray structures.
Using this data set they trained and validated their method, compared it against others and concluded that interfacial contacts `can be considered the best structural property to describe binding strength`. This claim may be true but as we discussed in the meeting there is still some work to do before we take this model an run with it. A number of flags were raised:

  • Classification of experimental methods into reliable and non-reliable is based on what gives the best results with their method. Given that different types of protein complexes are often measured with different methods, some protein classes for which contact-based predictions are less effective may be excluded.
  • Number of parameters for model 6 is problematic without exact AIC information. As Lyuba righlty pointed out, the intercept in model 6 `explodes`. It is no surprise that the correlation improves with more parameters. Despite their AIC analysis, overfitting is still a worry due to the lack of details presented in the paper.


  • Comparison against other methods is biased in their favour; their method was trained on the same data set, the others were not. In order to ensure a fair comparison all methods should be trained on the same data set. Of course this is hard to do in practice, but the fact remains that a comparison of methods that has been trained on different data sets will be flawed.

Paper: Vangone, A., Bonvin, A. M. J. J., Alberts, B., Aloy, P., Russell, R., Andrusier, N., … Zhou, Y. (2015). Contacts-based prediction of binding affinity in protein-protein complexes. eLife, 4, e07454.