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What does the word probability mean? One could argue that given the laws
of physics and the initial conditions, all events are deterministic, so there is no
such thing as probability. While we may know the laws of physics, we do not
know the initial conditions of all particles in the Universe. Therefore, we do not
know all of the relevant information that determines whether an event occurs
or not. Due to this lack of complete information, we reason about the world
under uncertainty and we quantify our uncertainty by assigning probabilities to
events.

Two interpretations of probability

There are two broad interpretations of the probability p ∈ (0, 1) of an event.
(1) The frequentist interpretation considers probability to be the relative fre-
quency of an event’s occurrence as the situation in which the event could occur
is repeated indefinitely. For example, if we consider flipping a weighted coin
hundreds of times and observing it land heads about 42% of the time, we could
estimate from this frequency that the coin has probability p = 0.42 of landing
heads. The frequentist definition may be unwieldy however when we consider
more unique, one-off situations, e.g., the 2024 US Presidential election. (2) The
Bayesian interpretation is more suitable for such situations, as it considers prob-
ability to be one’s degree of belief or opinion that an event will occur. That is,
probability is defined as a final representation of one’s state of knowledge about
the occurence of an event, based on a logical assessment of prior observations
and evidence. One could imagine a Bayesian believing that if the future of the
Universe were split into many equally possible branches, the event would occur
in the fraction p of these branches.

Definition of Surprise

Now let us define surprise. As you might expect, the term simply measures how
surprised we are by the occurrence of an event. If an event with probability p
occurs, then our amount of ‘surprise’ is log(1/p). This makes sense if we consider
an event that has a 100% probability of occurring. We should have 0 surprise
when it occurs, and indeed log(1/1) = 0. Likewise, if an event occurred that we
mistakenly believed had probability p = 0 (let us imagine the calculus version
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Figure 1: Sunday at the Museum, Honoré Daumier.

of p infinitely approaching 0). Then, our surprise is log(1/0) = log(∞) = ∞.
This is why you should never assign a probability of 0 to any event, because
then if it occurs, you will either be infinitely surprised or undefined.

Kullback-Leibler divergence

Surprise is closely related to the Kullback-Leibler (KL) divergence, which is
a measure of how different two probability distributions are. To explain this,
we must first explain the concept of expected surprise. Let ptrue be the true
probability distribution over observations x ∈ X such that ptrue(x) gives the
true probability of observing of x. For our weighted coin example, x = the
event that the coin lands heads. This event is an element of the set X , which
is the space of all possible events considered by the probability distribution
(there are only two – either the coin lands heads or tails). Suppose then that
the coin actually lands heads with probability ptrue(x) = 42.690. . .%. (For the
sake of simplicity, I’m intentionally conflating the event space with the domain
of a random variable, and the realization of an event with the realization of a
random variable.) Let pmodel be our model probability distribution, which is
our current guess for ptrue (we guessed pmodel(x) = 42.0%).

For the uninitiated, Ex∼pdistr

[
f(x)

]
is the expected value of the func-

tion f(x) when the events x ∈ X occur (i.e. are distributed) according
to the probability distribution pdistr. (Expected value and expectation are
exactly the same concept as average or mean.) If our function f is sur-
prise, then the average amount of surprise we experience by using our model
is Ex∼ptrue

[
log(1/pmodel(x))

]
, because the data is distributed according to

ptrue and our function is log(1/pmodel(x)). If instead of using an imperfect
model, we know the true distribution ptrue, then our expected surprise is
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Ex∼ptrue

[
log(1/ptrue(x))

]
.

KL-Divergence is typically understood as a measure of how one probability
distribution is different from a second, reference probability distribution. When
we let those two probability distributions be ptrue and pmodel, the equation for
KL-Divergence is:

DKL(ptrue||pmodel) = Ex∼ptrue

[
log(1/pmodel(x))

]
− Ex∼ptrue

[
log(1/ptrue(x))

]
.

We can see that the KL-divergence to ptrue from pmodel is the expected excess
surprise from using our imperfect model pmodel rather than the ground truth
ptrue. That is, the KL-divergence measures the extra amount of surprise we
experience on average when the actual data is distributed according to ptrue
but we are instead working with pmodel. It’s the price we pay – in terms of
being surprised – for having the wrong model. It can be shown with Jensen’s
inequality that the KL-divergence is always positive, except when pmodel = ptrue,
when it is clearly equal to zero. This means that we are always more surprised
on average when we are working with the wrong probabilities than when we
work with the correct probabilities, which makes intuitive sense.

Model selection with KL-divergence minimization

KL-divergence is important in statistics and machine learning because we
choose our model by minimizing the KL-divergence. We can now understand
this process of model selection as minimizing how surprised we are on aver-
age by using our model. Minimizing KL-divergence is also called minimizing
the cross-entropy (average surprise is also called entropy), and we are tak-
ing the cross (i.e. the difference through subtraction) between our model’s
entropy Ex∼ptrue

[
log(1/pmodel(x))

]
and the irreducible ground truth entropy

Ex∼ptrue

[
log(1/ptrue(x))

]
. Minimizing the KL-divergence is also equivalent to

finding the Bayes estimator when our cost function is surprise. One could imag-
ine that we are pained by surprise and therefore want to expect as little of the
emotion as possible, however we have no bias towards the kind of surprise we
experience. That is, we do not have a preference for or against being surprised
by making a false positive or a false negative (for classification tasks), or by
overestimating or underestimating (for regression tasks).

This concept of surprise tends to favour the Bayesian definition of probabil-
ity. Surprise can be viewed as the emotion one experiences when one’s beliefs
pmodel do not match reality ptrue. We see however that even when our beliefs are
correct (pmodel = ptrue), we still experience an irreducible amount of surprise
on average (i.e. entropy) given by Ex∼ptrue

[
log(1/ptrue(x))

]
, we cannot get any

less surprised than this. The irreducibility of this surprise begs the question of
what we mean by ptrue. We said earlier that if we knew everything about the
Universe, then every observed event has probability 1. That is, the omniscient
observer is never surprised. We consider the existence of ptrue only because we
imagine there is some level of irreducible uncertainty in the universe.

For example, suppose we want to predict some target y (e.g. the height of
a child) based on known observations x (e.g. the heights of the child’s par-
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ents). Then p(y|x) gives the conditional probability of the target y based on
the observations x. This mapping from our observations x to our target y may
be inherently stochastic. That is, there may be some completely unpredictable
biological randomness in the determination of height. Or, perhaps y is deter-
ministic but depends on other variables not included in x, which we therefore
do not observe, e.g., the specific alleles of the parents and the diet of the child.
Whether the system is either inherently stochastic or we do not have all the
necessary information, the ground truth ptrue(y|x) is in either case entropic (i.e.
surprising). The lowest error we could possibly hope to obtain by our model, the
error we would incur if we were an oracle making predictions from this ‘true’
distribution, is known as the Bayes error rate. That is, with surprise as our
cost function, the Bayes error rate is the irreducible average surprise given by
Ex∼ptrue

[
log(1/ptrue(x))

]
.

KL-divergence minimization is maximum likelihood estimation

If we were to try to minimize the KL-divergence of our model in the way just
described, we would need access to ptrue. Unfortunately, this is almost never
the case (if we knew ptrue, then there would be no need to build pmodel). As
an approximation to ptrue, we use p̂data, which is simply the dataset, i.e., the
empirical distribution of the observations. It consists of paired observations x
and y. This is where the term training comes from in machine learning, as we
typically split the dataset randomly into a set for training the model (showing it
observations of x paired with y) and a separate set for testing the performance
of model (showing it only x and asking it to predict y). We hope that the
model, which is like a ‘machine’, learns effectively from the training set, hence
we call it machine learning. Admittedly, the terminology is a bit pretentious.
By using this method, we are hoping that the empirical distribution of the
data p̂data matches ptrue, which is more likely to occur in large diverse datasets
that converge with fidelity to the population distribution of possible events.
We also hope that there is sufficient dependency between our target y and the
information provided within each observation x such that our target y could in
theory be predicted from x.

As a way of selecting the optimal pmodel (the one that minimizes the KL-
divergence) it is often most convenient to utilize a parametric family of probabil-
ity distributions pmodel(x,θ), which defines a space of possible models indexed
by the parameter θ (note that θ can be an array of multiple constituent param-
eters). We then search for the optimal model within this space of models by
searching for the best parameter θ. By optimal model, we mean the one that
gets as close as possible to the elusive ptrue. The KL-divergence minimization
is therefore performed by adjusting the parameter θ. In practice, we must use
p̂data in place of ptrue, in which case our KL-divergence is

DKL(ptrue||pmodel) = Ex∼p̂data

[
log(1/pmodel(x;θ))

]
−Ex∼p̂data

[
log(1/p̂data(x))

]
We can neglect the term on the right in the minimization procedure because it
is simply a function of the data, not of θ. We therefore simply need to find the
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parameter θ that minimizes

Ex∼p̂data

[
log(1/pmodel(x;θ))

]
It might surprise you that this minimization is identical to maximum likeli-

hood estimation (MLE). We can see this connection if we look at the definition
of the maximum likelihood estimator for θ (for n observations x(i) in the data):

θMLE = argmax
θ

pmodel(data;θ)

= argmax
θ

log(

n∏
i=1

pmodel(x
(i);θ))

= argmax
θ

n∑
i=1

log(pmodel(x
(i);θ))

= argmax
θ

Ex∼p̂data

[
log(pmodel(x;θ))

]
= argmin

θ
Ex∼p̂data

[
log(1/pmodel(x;θ))

]
.

We typically think of MLE as picking the parameter θ that maximizes the
probability of observing the dataset, under the assumption that the data points
are approximately independent and identically distributed according to ptrue and
ptrue is within the parametric family pmodel(x,θ). Now, we see that this method
is equivalent to minimizing the expected surprise, under this same assumption.

Linear regression is Gaussian surprise minimization

If you’ve ever used linear regression, you’ve performed MLE. Linear regression
makes predictions with a linear combination of observed features x, weighted by
θ, and penalizes the sum of the squared errors between the predictions and the
observed data. In this way, the model obtains the hyperplane of best fit in the
space X ∪ R (where x ∈ X and y ∈ R). Penalizing the squared error is equiv-
alent to assuming a Gaussian parametric model pmodel(y|x,θ) = N (θTx, 1) in
which the data is assumed to be normally distributed (with irrelevant variance
for making predictions) about the prediction θTx. The equivalency between the
squared error cost and the Gaussian parametric family arises simply because the
Gaussian probability density function actually contains the squared difference
between the prediction θTx and the observed target y: (y − θTx)2 in an ex-
ponential and that exponential is stripped away when the log is applied in the
θMLE summation (as shown above). Likewise, the product of the joint proba-
bility of independent and identically distributed observations becomes the sum
of the terms in the exponential (the squared error), as the log operation turns a
product Π to a sum Σ (also as shown above). This is why MLE with the Gaus-
sian parametric family is equivalent to minimizing the sum of the squared errors,
i.e., the method of least squares. Therefore, we see that using the squared error
as the cost function is identical to using surprise as the cost function and as-
suming the data is Gaussian distributed (both approaches have the same Bayes
estimator).
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Surprise is also information content

It should also be noted that surprise is also known as information content (or
Shannon information). This makes sense when we consider the obvious fact that
learning that an unlikely event has occurred is more informative than learning
that a likely event has occurred. In the extreme case, when we learn that
an event occurred that we believed had a 100% chance of occurring, we are
clearly provided with with no new information. We often use base-2 for the
logarithm in log(1/p), so that the amount of information provided by an event
can be measured in bits (an event that has probability p = 1/2 provides one
bit of information when it occurs). In this view, the entropy of a probability
distribution tells us the average amount of information provided by an event
drawn from that distribution. Equivalently, the entropy gives us the number of
bits needed on average to encode events drawn from that distribution, e.g., if we
were communicating the outcome of the events over a communication channel
and wanted to use as few bits as possible.

Surprise in everyday life

This is getting a bit rambly. There’s more I want to say about surprise so I
should continue this in a second blog post. The main reason I thought surprise
was interesting is that I think it is a connection between statistics and the human
emotional experience. It is the feeling of surprise that repeatedly teaches us the
hard lesson that the world indeed is probabilistic, not deterministic, and that
we cannot predict the future perfectly. By understanding ideas of probability
and statistics in terms of surprise, we can see these same ideas from the same
intuitive perspective we use for our every-day understanding of the world and
hopefully then gain a deeper intuitive understanding of statistics.

Instead of thinking of modeling as maximizing likelihood, whatever that
means, we can think of modeling as a way of trying to be less surprised by events.
We make our model of the world under a surprise-minimization framework,
which tends to be how we go through our lives anyways. Perhaps this is part
of our brains’ vestigial survival mechanism. Our ecological niche was having
sophisticated brains that could form a high-fidelity model of the complex world
around us and act on those models, finding ingenious and resourceful paths to
evolutionary success. Even if our model was technically wrong, as long as it
was useful, it was good. This goes with the well-known saying in statistics: All
models are wrong, but some are useful. Much of our model of the world exists
within intuition and common sense: that ineffable knowledge-base that shapes
our actions through some automatic, neigh latent mechanism. This model can
be updated by the emotion of surprise and its associated valence, depending
on the event that elicits it. On the other hand, when someone makes the sly
comment in response to some piece of news ‘I’m not surprised,’ often what they
are really saying is that their mental model of the world had placed a relatively
high degree of belief or probability in the event possibly occurring and they may
even feel some pride in the fidelity of their mental model.

6

https://en.wikipedia.org/wiki/Information_content
https://en.wikipedia.org/wiki/Ecological_niche
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/Unconscious_mind


There is a tendency among humans to perceive past events as having been
more predictable than they actually were. This is known as hindsight bias.
Perhaps we have this bias because surprise promotes a sense-making process in
which we change our model of the world [1]. Under our new updated model of
the world, the event is more likely and we mistakenly misremember that we held
this new model of the world all along. This might also explain why hindsight
bias has been found to be more likely to occur when the outcome of an event is
negative rather than positive [2]. We are more sensitive to negative events and
our model of the world is updated more in response to the surprise of a negative
event. That is, in our belief and expectation-forming process, we do not perform
simple maximum likelihood estimation, because we change our model more in
response to negative events than in response to positive events. None of us
likes to be surprised by negative events, we do not like black swans. However
being surprised by positive events can also be disorienting as it makes us realize
that we had the wrong model of the world. We are confronted with the missed
opportunities by having an overly pessimistic or conservative outlook. Now we
can see the inherent cost function of our inner model: We penalize surprise,
especially of negative events. Quoting the English journalist Walter Bagehot:
“One of the greatest pains to human nature is the pain of a new idea.”

Since the surprise of an event is equivalent to the amount of informa-
tion provided by it, we should be unsurprised (no pun intended) that modern
information-providing outlets, that cater to the demands of our anachronistic
brains, i.e. the news and media, tend to publicize unlikely events. Further-
more, to best update our Bayesian belief systems (models) about the world, we
would expect these outlets to publicize the kinds of events that us humans are
most sensitive to: negative events. Unsurprisingly as well, there is substantial
research to show that the news tends to be negative, explaining the adage in
media “if it bleeds, it leads” [3]. As you read this now, please open up your
favorite news website of choice, and I will bet you that within the top stories,
there will be one about an event that is both relatively unlikely and negative.
If I am wrong then please send me a contemporaneous screenshot along with
your bank details and I will transfer you £0.42. I should note that I got some
of the ideas in this post from Joseph Blitzstein’s Probability textbook [4] and
Ian Goodfellow’s Deep Learning textbook [5]. I highly recommend giving both
books a read.
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