Tag Archives: iPython

Interesting Jupyter and IPython Notebooks

Here’s a treasure trove of interesting Jupyter and iPython notebooks, with lots of diverse examples relevant to OPIG, including an RDKit notebook, but also:

Entire books or other large collections of notebooks on a topic (covering Introductory Tutorials; Programming and Computer Science; Statistics, Machine Learning and Data Science; Mathematics, Physics, Chemistry, Biology; Linguistics and Text Mining; Signal Processing; Scientific computing and data analysis with the SciPy Stack; General topics in scientific computing; Machine Learning, Statistics and Probability; Physics, Chemistry and Biology; Data visualization and plotting; Mathematics; Signal, Sound and Image Processing; Natural Language Processing; Pandas for data analysis); General Python Programming; Notebooks in languages other than Python (Julia; Haskell; Ruby; Perl; F#; C#); Miscellaneous topics about doing various things with the Notebook itself; Reproducible academic publications; and lots more!  


Viewing 3D molecules interactively in Jupyter iPython notebooks

Greg Landrum, curator of the invaluable open source cheminformatics API, RDKit, recently blogged about viewing molecules in a 3D window within a Jupyter-hosted iPython notebook (as long as your browser supports WebGL, that is).

The trick is to use py3Dmol. It’s easy to install:

pip install py3Dmol

This is built on the object-oriented, webGL based JavaScript library for online molecular visualization 3Dmol.js (Rego & Koes, 2015); here's a nice summary of the capabilities of 3Dmol.js. It's features include:

  • support for pdb, sdf, mol2, xyz, and cube formats
  • parallelized molecular surface computation
  • sphere, stick, line, cross, cartoon, and surface styles
  • atom property based selection and styling
  • labels
  • clickable interactivity with molecular data
  • geometric shapes including spheres and arrows

I tried a simple example and it worked beautifully:

import py3Dmol
view = py3Dmol.view(query='pdb:1hvr')


The 3Dmol.js website summarizes how to view molecules, along with how to choose representations, how to embed it, and even how to develop with it.


Nicholas Rego & David Koes (2015). “3Dmol.js: molecular visualization with WebGL”.
Bioinformatics, 31 (8): 1322-1324. doi:10.1093/bioinformatics/btu829