Category Archives: Links

Submitting your thesis!

Writing and submitting your thesis is (almost) the final stage of completing your PhD. It can be the most stressful and unpleasant part of the process… but it can also be rewarding to see the story of your last three years’ work fall into place.

 "Piled Higher and Deeper" by Jorge Cham (

All I want for christmas is… “Piled Higher and Deeper” by Jorge Cham (

This post is a miscellaneous collection of advice and resources about the submission process, most of which have been passed down from the very first members of OPIG. Hopefully it will be useful to have it all in the same place for present and future members. Feel free to comment here if you have any tips I have missed!

All information and links that I’ve included are correct at the time of writing (for Oxford University Statistics students) but you should always use the university’s guidelines as your primary resource.

The very beginning: the plan

Don’t spend too long on this! But you should have an idea of your planned chapter titles and an overall story for your book. Also useful is a timeline for when you will finish drafts of chapters by. Try to be realistic with this. If you decide to change your thesis title you should fill out an application for change of thesis title form (GSO.6). Make sure you look up any restrictions (word/page limits etc.) which may apply, and confirm your hand-in date.

Starting writing

It’s a good idea to decide what you will use to write your thesis. Most OPIG members use LaTeX. There are some great thesis templates out there but the one most people tend to use is one from Cambridge’s Engineering department. You can do a fair bit of customisation within that template… changing fonts, headers, titles and more, but it’s a great starting point.

When the finish line’s in sight: choosing examiners

A couple of months before you are planning to submit your thesis you should discuss with your supervisor(s) potential examiners. Your supervisor can informally check with them if they are happy to examine you and then you should fill out an appointment of examiners form (GSO.3). You can also change your thesis title on this form without filling in GSO.6.

Finishing writing

Your final document is likely to be over 100 pages with thousands of words (or potential typos as you might come to call them). A great LaTeX spell checker is aspell which should already be installed on your work machine. To spell check a .tex file (ignoring all TeX notation… apart from multiple citations I found!) using a British dictionary simply type:

aspell --lang=en_GB -t -c filename.tex

You’re absolutely guaranteed to still have typos floating around but it’s a decent start. You (and others if you can get them) should manually proof-read as well!

Final Formatting

Your thesis should be set out on numbered, portrait A4 pages. It should be double spaced and the inner (bound) margin should be 3-3.5cm. For more details on the formatting required check out the university’s regulations.

Printing and binding

When you’re happy with your proof-reading (you’re still almost guaranteed to have remaining typos) you’ll have to print and bind your finished book! To comply with university guidelines you will need to submit two copies, for each of your examiners, to the exam schools. You may also like to print a copy for yourself (you will need one to take with you into your viva). Before you start, if you are printing in colour at the department make sure you have enough printer credit by emailing IT (let them know the printer and your Bod card number and they will top you up if necessary).

If you are planning to print your copies double sided you may want to buy your own paper of higher quality than that provided by the department (at least 100gsm). As of October 2014, the Oxford Print Centre was selling the cheapest packs of 100gsm paper we could find but sold out close to deadline day! Also check out WHSmiths or Ryman’s.

You might want to do a test run of a few colour pages of your thesis before you send the whole file to be printed. Printing at 1200dpi (instead of the default 600dpi) can improve the appearance of your figures considerably. You may want to stay late at the office to print so you are not disturbed by other print jobs during office hours.

Your thesis should be securely bound in either hard or soft cover. Loose-leaf or spiral binding won’t be accepted. There are several binding facilities through Oxford but I used the Oxford Print Centre just down the road, which also guarantees a one hour service for soft binding even on submission days.


Submit your completed copies to the exam schools, noting their opening hours (08.30-17:00, Monday to Friday), take the traditional photo, and bask in your newly found FREEDOM (try to forget about the viva!).

[Database] SAbDab – the Structural Antibody Database

An increasing proportion of our research at OPIG is about the structure and function of antibodiesCompared to other types of proteins, there is a large number of antibody structures publicly available in the PDB (approximately 1.8% of structures contain an antibody chain). For those of us working in the fields of antibody structure prediction, antibody-antigen docking and structure-based methods for therapeutic antibody design, this is great news!

However, we find that these data are not in a standard format with respect to antibody nomenclature. For instance, which chains are “heavy” chains and which are “light“? Which heavy and light chains pair? Is there an antigen present? If so, to which H-L pair does it bind to? Which numbering system is used … etc.

To address this problem, we have developed SAbDab: the Structural Antibody Database. Its primary aim is for easy creation of antibody structure and antibody-antigen complex datasets for further analysis by researchers such as ourselves. These sets can be selected using a number of criteria (e.g. experimental method, species, presence of constant domains…) and redundancy filters can be applied over the sequences of both the antibody and antigen. Thanks to Jin, SAbDab now also includes associated curated affinity (Kd) values for around 190 antibody-antigen complexes. We hope this will serve as a benchmarking tool for antibody-antigen docking prediction algorithms.


Alternatively, the database can be used to inspect and compare properties of individual structures. For instance, we have recently published a method to characterise the orientation between the two antibody variable domains, VH and VL. Using the ABangle tool, users can select structures with a particular VH-VL orientation, visualise and quantify conformational changes (e.g. between bound and unbound forms) and inspect the pose of structures with certain amino acids at specific positions. Similarly, the CDR (complimentary determining region) search and clustering tools, allow for the antibody hyper-variable loops to be selected by length, type and canonical class and their structures visualised or downloaded.



SAbDab also contains features such as the template search. This allows a user to submit the sequence of either an antibody heavy or light chain (or both) and to find structures in the database that may offer good templates to use in a homology modelling protocol. Specific regions of the antibody can be isolated so that structures with a high sequence identity over, for example, the CDR H3 loop can be found. SAbDab’s weekly automatic updates ensures that it contains the latest available data. Using each method of selection, the structure, a standardised and re-numbered version of the structure, and a summary file containing information about the antibody, can be downloaded both individually or en-masse as a dataset. SAbDab will continue to develop with new tools and features and is freely available at:

GPGPUs for bioinformatics

As the clock speed in computer Central Processing Units (CPUs) began to plateau, their data and task parallelism was expanded to compensate. These days (2013) it is not uncommon to find upwards of a dozen processing cores on a single CPU and each core capable of performing 8 calculations as a single operation. Graphics Processing Units were originally intended to assist CPUs by providing hardware optimised to speed up rendering highly parallel graphical data into a frame buffer. As graphical models became more complex, it became difficult to provide a single piece of hardware which implemented an optimised design for every model and every calculation the end user may desire. Instead, GPU designs evolved to be more readily programmable and exhibit greater parallelism. Top-end GPUs are now equipped with over 2,500 simple cores and have their own CUDA or OpenCL programming languages. This new found programmability allowed users the freedom to take non-graphics tasks which would otherwise have saturated a CPU for days and to run them on the highly parallel hardware of the GPU. This technique proved so effective for certain tasks that GPU manufacturers have since begun to tweak their architectures to be suitable not just for graphics processing but also for more general purpose tasks, thus beginning the evolution General Purpose Graphics Processing Unit (GPGPU).

Improvements in data capture and model generation have caused an explosion in the amount of bioinformatic data which is now available. Data which is increasing in volume faster than CPUs are increasing in either speed or parallelism. An example of this can be found here, which displays a graph of the number of proteins stored in the Protein Data Bank per year. To process this vast volume of data, many of the common tools for structure prediction, sequence analysis, molecular dynamics and so forth have now been ported to the GPGPU. The following tools are now GPGPU enabled and offer significant speed-up compared to their CPU-based counterparts:

Application Description Expected Speed Up Multi-GPU Support
Abalone Models molecular dynamics of biopolymers for simulations of proteins, DNA and ligands 4-29x No
ACEMD GPU simulation of molecular mechanics force fields, implicit and explicit solvent 160 ns/day GPU version only Yes
AMBER Suite of programs to simulate molecular dynamics on biomolecule 89.44 ns/day JAC NVE Yes
BarraCUDA Sequence mapping software 6-10x Yes
CUDASW++ Open source software for Smith-Waterman protein database searches on GPUs 10-50x Yes
CUDA-BLASTP Accelerates NCBI BLAST for scanning protein sequence databases 10 Yes
CUSHAW Parallelized short read aligner 10x Yes
DL-POLY Simulate macromolecules, polymers, ionic systems, etc on a distributed memory parallel computer 4x Yes
GPU-BLAST Local search with fast k-tuple heuristic 3-4x No
GROMACS Simulation of biochemical molecules with complicated bond interactions 165 ns/Day DHFR No
GPU-HMMER Parallelized local and global search with profile Hidden Markov models 60-100x Yes
HOOMD-Blue Particle dynamics package written from the ground up for GPUs 2x Yes
LAMMPS Classical molecular dynamics package 3-18x Yes
mCUDA-MEME Ultrafast scalable motif discovery algorithm based on MEME 4-10x Yes
MUMmerGPU An open-source high-throughput parallel pairwise local sequence alignment program 13x No
NAMD Designed for high-performance simulation of large molecular systems 6.44 ns/days STMV 585x 2050s Yes
OpenMM Library and application for molecular dynamics for HPC with GPUs Implicit: 127-213 ns/day; Explicit: 18-55 ns/day DHFR Yes
SeqNFind A commercial GPU Accelerated Sequence Analysis Toolset 400x Yes
TeraChem A general purpose quantum chemistry package 7-50x Yes
UGENE Opensource Smith-Waterman for SSE/CUDA, Suffix array based repeats finder and dotplot 6-8x Yes
WideLM Fits numerous linear models to a fixed design and response 150x Yes

It is important to note however, that due to how GPGPUs handle floating point arithmetic compared to CPUs, results can and will differ between architectures, making a direct comparison impossible. Instead, interval arithmetic may be useful to sanity-check the results generated on the GPU are consistent with those from a CPU based system.

Good looking proteins for your publication(s)

Just came across a wonderful PyMOL gallery while creating some images for my (long overdue) confirmation report.  A fantastic resource to draw sexy proteins – especially useful for posters, talks and papers (unless you are paying extra for coloured figures!).

It would be great if we had our own OPIG “pymol gallery”.

An example of one of my proteins (1tgm) with aspirin bound to it:

Good looking protein