Category Archives: Immunoinformatics

Working with PDB Structures in Pandas

Pandas is one of my favourite data analysis tools working in Python! The data frames offer a lot of power and organization to any data analysis task. Here at OPIG we work with a lot of protein structure data coming from PDB files. In the following article I will go through an example of how I use pandas data frames to analyze PDB data.

Continue reading

The Antibody Dictionary

Similar to getting lost in a language when moving country, you might encounter a language barrier when moving research fields. This dictionary will guide you in the complex world of immunoinformatics, with a focus on antibodies. Whether your main research will be in this field, you want to apply your machine learning model on antibodies, or you just want to understand the research performed in OPIG, this dictionary will get you started.

The Antibody Dictionary:

Affinity maturation: The optimisation process of naive antibodies to memory antibodies such that the antibody is optimised for a specific antigen. 

Antibody: (immunoglobulin) a Y-shaped molecule important in the adaptive immune system. A canonical antibody consists of two identical heavy chains and two identical smaller light chains. 

Continue reading

What can you do with the OPIG Immunoinformatics Suite? v3.0

OPIG’s growing immunoinformatics team continues to develop and openly distribute a wide variety of databases and software packages for antibody/nanobody/T-cell receptor analysis. Below is a summary of all the latest updates (follows on from v1.0 and v2.0).

Continue reading

Exploring the Observed Antibody Space (OAS)

The Observed Antibody Space (OAS) [1,2] is an amazing resource for investigating observed antibodies or as a resource for training antibody specific models, however; its size (over 2.4 billion unpaired and 1.5 million paired antibody sequences as of June 2023) can make it painful to work with. Additionally, OAS is extremely information rich, having nearly 100 columns for each antibody heavy or light chain, further complicating how to handle the data. 

From spending a lot of time working with OAS, I wanted to share a few tricks and insights, which I hope will reduce the pain and increase the joy of working with OAS!

Continue reading

Experience at a Keystone Symposium

From 19th-22nd February I was fortunate enough to participate in the joint Keystone Symposium on Next-Generation Antibody Therapeutics and Multispecific Immune Cell Engagers, held in Banff, Canada. Now in their 51st year, the Keystone Symposia are a comprehensive programme of scientific conferences spanning the full range of topics relating to human health, from studies on fundamental bodily processes through to drug discovery.

Continue reading

Happy 10th Birthday, Blopig!

OPIG recently celebrated its 20th year; and on 10 January 2023 I gave a talk just a day before the 10th anniversary of BLOPIG’s first blog post. It’s worth reflecting on what’s stayed the same and what’s changed since then.

Continue reading

5th Artificial Intelligence in Chemistry Symposium

The lineup for the Royal Society of Chemistry’s 5th “Artificial Intelligence in Chemistry” Symposium (Thursday-Friday, 1st-2nd September 2022) is now complete for both oral and poster presentations. It really is a fantastic selection of topics and speakers and it is clear this event is now a highlight of the scientific calendar. Our very own Prof. Charlotte M. Deane, MBE will be giving a keynote.

5th RSC-BMCS/RSC-CICAG Airtificial Intelligence in Chemistry Symposium, 1st-2nd September, Churchill College, Cambridge + Zoom broadcast.

It marks a return to in-person meetings: it will be held at Churchill College, Cambridge, with a conference dinner at Trinity Hall.

More details are here: https://www.rscbmcs.org/events/aichem22/.

Registration for in person attendance is open until Monday 29th August 17:00 (BST).

It is also possible to register for virtual attendance; the meeting will be broadcast on Zoom.

The SARS-CoV-2 protein spike glycosylation not only shields but primes binding by providing structural stability too

Yep, it is very well known that the sugar coating (aka glycosylation) of viruses makes them invisible to the immune system, a strategy so effective that like in the case of HIV, whose spike is almost entirely covered by glycans, makes it so difficult to target by the human immune system.

Unsurprisingly, coronaviruses such as SARS, MERS, and SARS-CoV-1(2) not only benefit from this evolutionary strategy but there is evidence now that sugars provide stability to their spikes to be effective binders by glueing the spike chains, hence making them infectious.

This is the major finding of this paper that introduces very interesting results from all-atom MD simulations of a fully glycosylated model of the  SARS-CoV-2 spike protein embedded in a realistic viral membrane. Researchers aimed to look into the stability of the protein spike (A, B, and C) chains in the “open” and “closed” conformation and how these changed upon key residue mutations to test how glycans sitting in the inter-chain space affect stability. It also aimed at quantifying glycans’ shielding effect from molecules ranging from 2 to 15 Angstroms, i.e., from small-sized to peptide- and antibody-sized molecules.  

Continue reading